

Shared Mobility How it can cut emissions, decrease congestion and free public space – Integrated with mass transit

Francisco Furtado (with Luis Martinez*, Olga Petrik and Jari Kauppila)

Door-to-door solutions: New business- opportunities for urban mobility

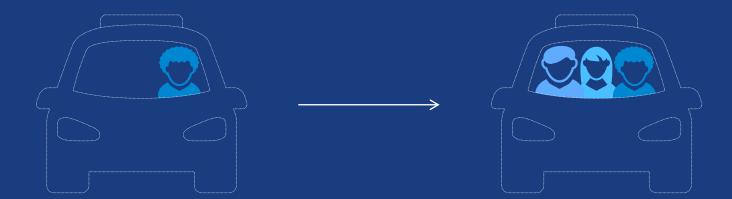
Corporate Partnership Board Members

disruption

City of Stockholm 10% of 18 year olds

have a driver's licence

Aretun & Nordbakke, 2014



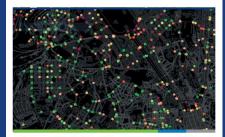
what if?

real city

Q

0

Agent-based Simulation framework



2015 Report Urban Mobility System Upgrade: How Shared Self-Driving Cars Could Change City Traffic (Lisbon city)

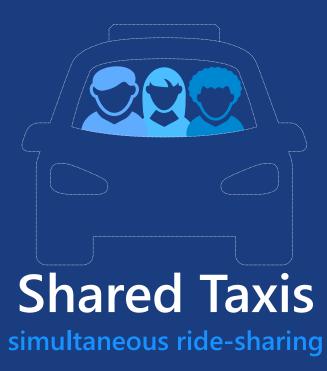
Urban Mobility System Upgrade How shared self-driving cars could change city traffic

OECD

Impacts

	Scenario	Fleet size	Parking spots	Car-kms (million)	Peak hour flow
	Baseline (% of baseline fleet)	203,000	203,000*	3.8	60,000
Ride-sharing	No high capacity public transport (commuter rail, subway, BRT, LRT)	25,917 12.8%	11,563 7.2%	3.75 98.7%	25,867 43.1%
	High capacity transport (commuter rail, subway, BRT, LRT)	21,120 10.4%	8,901 5.7%	3.55 93.4%	21,105 35.2%
Car-sharing	No high capacity public transport (commuter rail, subway, BRT, LRT)	46,249 22.8%	25,621 16.0%	5.45 143.4%	46,011 76.7%
	High capacity transport (commuter rail, subway, BRT, LRT)	34,082 16.8%	17,110 10.7%	4.83 127.1%	33,975 56.6%

Shared Mobility Innovation for Liveable Cities



2016 Report Shared Mobility: Innovation for Liveable Cities (Lisbon city)

OECD

optimised on-demand bus

Lisbon

Scenario: 24 hours

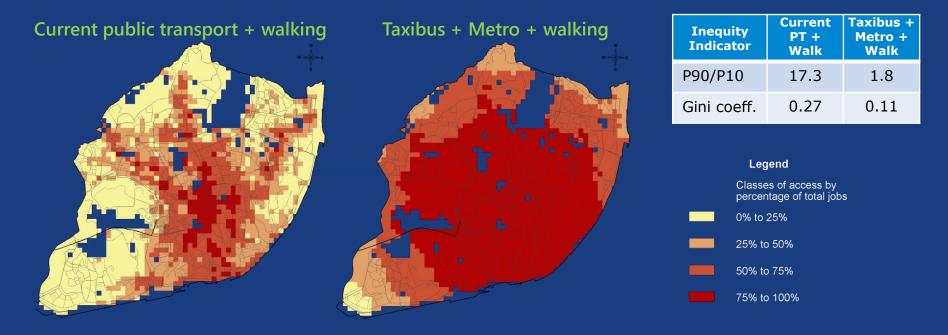
number of cars required to provide the same trips as before:

Lisbon

Scenario: 24 hours

number of cars required to provide the same trips as before: \mathbf{U}

CO₂ emissions

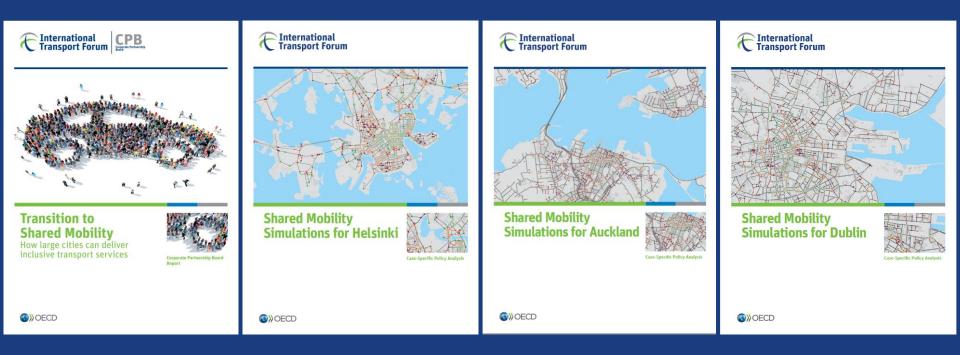

-34%

(Lisbon city)

Impacts on Accessibility - Jobs

For each cell as origin, % of total jobs in the city accessed in 30 minutes

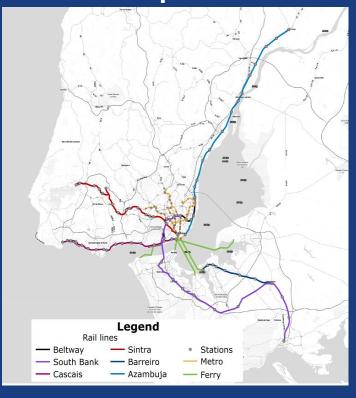
e impact of the second street parking


STATE TAXA aller 11 off-street parking

[]a

Feeder services to mass transit

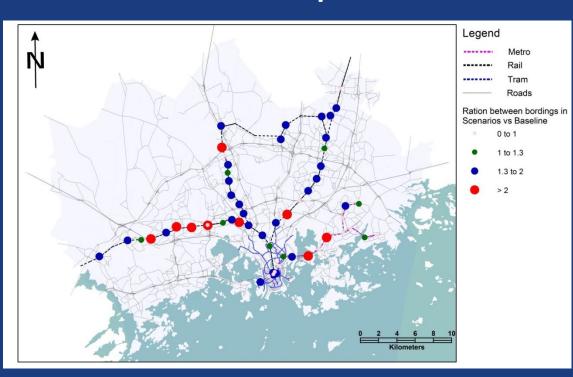
Booking rules of Taxi-Bus PT station walking distance from origin or destination One transfer Travel time up to +15 min than car



Increase in metro and rail ridership (Lisbon)

47%

(passengers per day)



Increase in metro and rail ridership (Helsinki)

30%

(passengers per day)


R International Transport Forum

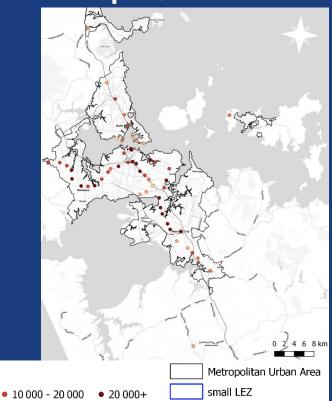
Increase in Irt and rail ridership (Dublin)

(passengers per day)

Increase in brt and rail ridership (Auckland)

(passengers per day)

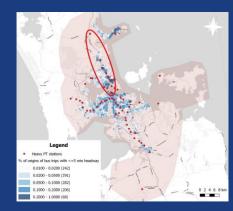
Legend

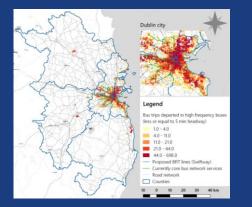

1-200

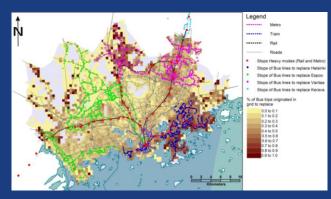
• 200-1000

Boardings at stops

• 1000-5000


5 000-10 000





Testing targeted policies Interaction with current bus operation (Auckland) (Dublin) (Helsinki)

Testing targeted policies Interaction with current bus operation (Auckland) (Dublin) (Helsinki)

- BRT corridors preservation demonstrated better performance
- Low frequency services showed worse performance than SM
- Services should be adapted and be more flexible
- Cost provision reduction and greater connectivity and access

Core bus network and new BRT corridors seem to be well fitted to current demand (recent design) and perform better than flexible low capacity SM services

- SM outperforms other bus services specially regional services in the wider GDA
- Cost provision reduction and greater connectivity and access

- Replacing all buses worse from emissions perspective than keeping them
- Potential gains if lower frequency buses in remote areas are replaced
- Keep the other services or adapt
- Cost provision reduction and greater connectivity and access

Impacts (Full adoption scenario) -54% -31% -34% -62%

(Auckland)

 CO_2 emissions

(Helsinki)

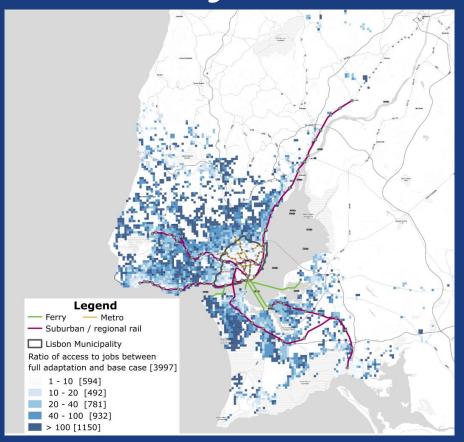
(Dublin)

(Lisboa)

Impacts (Full adoption scenario) -93% -97% -96% -96%

(Auckland) (Dublin) (Helsinki) (Lisboa)

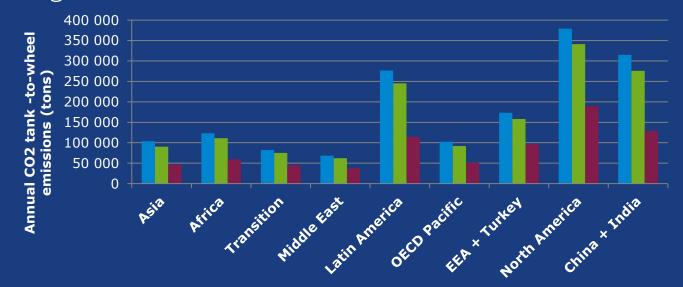
Motorised Fleet size


Impacts (Full adoption scenario) +254% +183% +111% +589% (Auckland) (Dublin) (Helsinki) (Lisboa) PT + SM accessibility

Impacts on Accessibility - Jobs

Improvement in access especially for more remote regions less wellserviced by public transport.

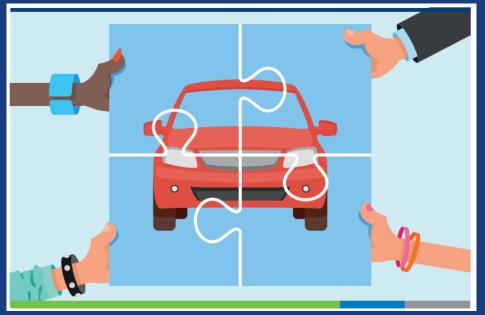
Carbon intensity model


Carbon intensity elasticity

Explanatory variable	Elasticity
Share of remaining car users (%)	0.39
Share of users of conventional bus (%)	0.04
Share of users of high performance bus (%)	-0.05
Highways network density (km/sqkm)	-0.07
Service provision	-0.15
(seat-km heavy PT per 1 million inhabitants)	
Population density (inhab. / sqkm)	-0.16
Non-motorised transport (%)	-0.14
Average trip distance (km)	0.08
Case study area size (skm)	-0.09
Car ownership	0.15

Carbon intensity model

Model testing – Results


Baseline Partial adoption (20% PC) Full adoption (100% PC and Conv. Bus)

Conclusions Rail and mass transit are key for sustainable cities Feed to mass transit – Quality of service PT Ensure line and station capacity – Pick/Drop areas Introduce at a sufficient scale Target potential early adopters particularly car users

Thank you!

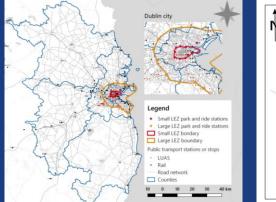
Francisco.FURTADO@itf-oecd.org Luis.MARTINEZ@itf-oecd.org Olga.PETRIK@itf-oecd.org Jari.KAUPPILA@itf-oecd.org

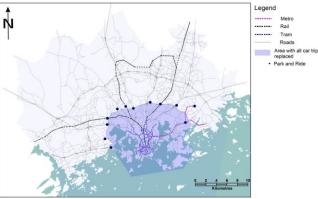
Reports available at https://www.itf-oecd.org/itf-work-shared-mobility

Testing targeted policies Interaction with current bus operation (Auckland) (Dublin) (Helsinki)

- BRT corridors preservation demonstrated better performance
- Low frequency services showed worse performance than SM
- Services should be adapted and flexibilising
- Cost provision reduction and greater connectivity and access


Core bus network and new BRT corridors seem to be well fitted to current demand (recent design) and perform better than flexible low capacity SM services


- SM outperforms other bus services specially regional services in the wider GDA
- Cost provision reduction and greater connectivity and access


- Tested replacement of bus feeder services to Heavy PT or low frequency services
- Both approached of update these services provided now by SM give very positive outcomes, specially replacing feeder services
- Keep the other services or adapt
- Cost provision reduction and greater connectivity and access

Testing targeted policies Car use restrictions (Low Emission Zones) (Auckland) (Dublin) (Helsinki)

Shared modes specification

Mode	Booking	Access time	Max. waiting time (depending on distance)	Max. total time loss (depending on distance)	Vehicle type
Shared Taxi	Real time	Door-to-door	5 minutes (\leq 3 km), up to 10 minutes (\geq 12 km)	Detour time + waiting time, from 7 minutes $(\leq 3 \text{ km})$, up to 15 minutes $(\geq 12 \text{ km})$	Minivan of 8 seats rearranged for 6 seats, with easy entry/exit
Taxi- Bus	30 minutes in advance	Boarding and alighting up to 400 m away from door, at points designated in real time	Tolerance of 10 minutes from preferred boarding time	Minimum linear speed from origin to destination (15 km/h)	Minibuses with 8 and 16 seats. No standing places

Testing targeted policies Car use restrictions (Low Emission Zones) (Auckland) (Dublin)

- Spatially narrow LEZ with small interaction with Heavy PT may led to greater congestion near the LEZ parking lots
- Peak period focus can almost achieve similar CO2 performance as the whole day restrictions
- Feeding SM services outside Limited cost efficiency

- Both tested LEZ systems where successful, yet again the narrow configuration has local congestion effects
- Traffic inside the LEZ is strongly reduced
- Services outside key in reducing the congestion at transfer points between car and SM / PT

(Helsinki)

- Significant reduction in congestion in tested scenario, showing comparable results with higher degrees of SM adoption in the whole study area
- Good integration with PT system allows reducing the local congestion effects
- Very efficient SM system (mainly Taxi-Buses)

Testing targeted policies Electrification

(Auckland)

- Reduce significantly costs
 - The increase in fleet due to requirements of range and charging time are largely compensated by reduction on energy costs
 - 2. These savings became negligible if small market size and may even increase costs

(Dublin)

- Small reduction in costs
 - The nature of a regional shared mobility services with greater distances leads to cars range be very frequently activated as a constraint, requirement significantly larger fleets for operation
 - 2. This problem intensifies for small adoption rates

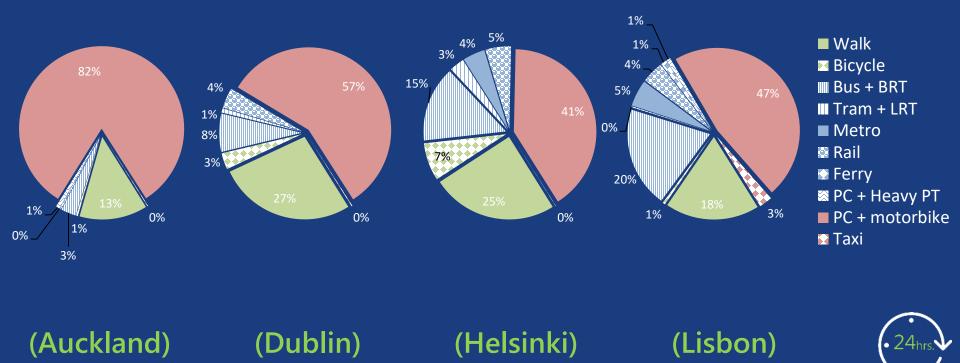
(Helsinki)

- Reduce significantly costs
 - 1. Large potential due to small required fleet increases with rare range constraint activation
 - 2. These savings became less significant in smaller fleets to recoup the additional investment costs

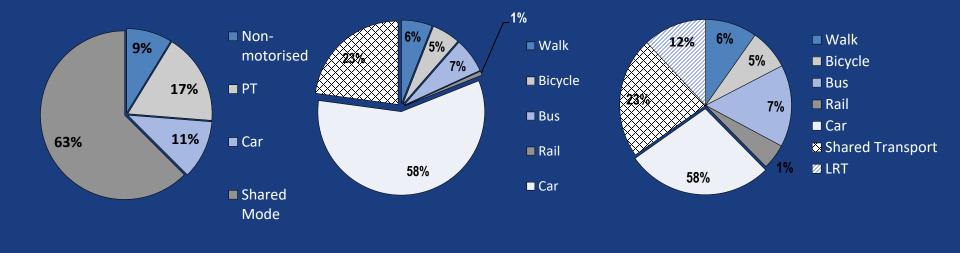
Testing targeted policies Self-driving technology

- The model estimates for self-driving operation result in reductions of approximately 50% on the prices for Shared Taxi and Taxi-Buses per kilometre. This reduction would lead to Shared Taxis being cheaper than current public transport in some cases
- The estimated values are aligned with recent studies that assessed the cost of shared self-driving vehicles
- Stephens, T. S., J. Gonder, Y. Chen, Z. Lin, C. Liu and D. Gohlke (2016), Estimated Bounds and Important Factors for Fuel Use and Consumer Costs of Connected and Automated Vehicles, National Renewable Energy Laboratory, NREL/TP-5400-67216

Testing targeted policies Market structure of SM provision



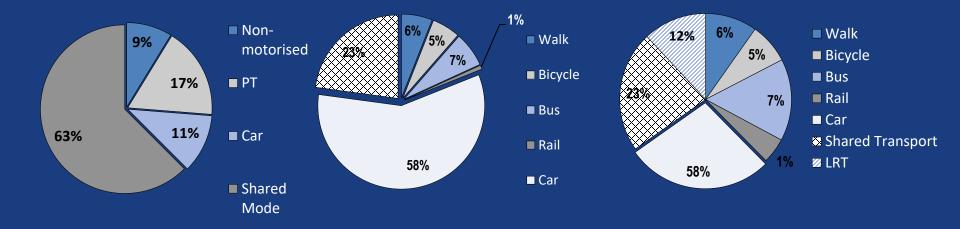
Understanding user preferences


Focus group for each city

Stated preference survey

Mode shares

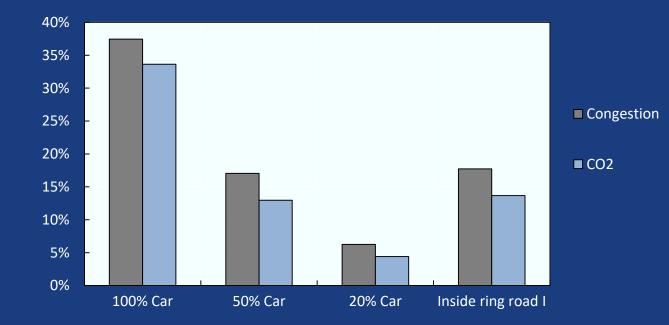
Shared mode in stated preference survey



Helsinki

Auckland

Car mode in stated preference survey


Auckland (87%)

Other observations

- Importance of having services across the entire area and feeder service to mass transit
- Willing to share vehicles with more rather than fewer travellers
- Early adopters: residents living far from the city centre, regular PT users young and people above 55 years
- Price important factor for all respondents
 - Waiting, access and travel time, number of transfers and comfort
- One third of respondents that own a car stated they would sell one of more cars if shared mobility services were available

Impacts on Helsinki MA

Factors affecting outcome Current modal share Public transport quality Density of the area Trip patterns

Transition Land use policies Economic instruments Infrastructure/service measures Regulatory policies

Modelling Framework

Characterisation of the study area

Transport infrastructure and services

Road network

PT GTFS model

Spatial definition and resolution

Study area boundaries

Grid system definition

Mobility seed and transport mode preferences

Travel survey

Mode choice model

Transport performance by

OD pair and mode

Travel times by mode

Probability of trip production / attraction

> Land use data (Grid) Population Employment Ameneties (POIs) Building footprint

Focus group and stated preference analysis Willingness to shift to SM

> SM mode selection Shared-Taxi, Taxi-Bus Feeder service to rail, ferry or BRT

Synthetic mobility dataset

Household characterisation (Residential location, family profile)

> Individual data (age, education level)

Mobility data (trip sequence, each trip (origin, destination, schedule, purpose, transport mode))

Transport demand & supply scenarios

Demand (Scenario specification) Private car trips, (% modal shift to SM), Bus trips (% modal shift to SM)

Supply (Scenario specification) Private car (allowed: Yes/No) Bus (preserved: Yes/No) BRT (preserved: Yes/No) Walking & biking (preserved: Yes) Rail and Ferry (preserved: Yes) Low Emission Zone (active: Yes/No) Simulation (Outputs) Service quality Waiting time Detour time Operational Performance Average vehicle occupancy Fleet requirements Costs Society (Sustainability) Emissions Congestion Accessibility indicators Parking requirements

